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Abstract

Biomedical literature is a large and rich source of information for various ap-

plications. Text mining tools aim at extracting information from the literature

in an efficient manner since processing scientific texts is a complex task given

the formal and highly specialized language. Text mining tools tackle these

challenges using different approaches, such as rule-based methods and machine

learning algorithms including deep learning. This document overviews the cur-

rent biomedical text mining tools by describing their approaches, tasks (e.g.

Named Entity Recognition, Relation Extraction, Event Extraction, Question

Answering), available corpora, toolkits and applications, and community chal-

lenges.

Keywords: Biomedical Literature, Distant supervision, Event Extraction,

Machine Learning, Named Entity Recognition, Normalization, Relation
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1. Introduction

Biomedical literature is one of the primary sources of current biomedical

knowledge. It is still the standard method researchers use to share their findings
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in the form of articles, patents, and other types of written reports (Hearst, 1999).

However, it is essential that a research group working on a given topic is aware5

of the work that has been done on the same topic by other research teams. This

task requires manual effort and may take a long time to complete due to the

large quantity of published literature. One of the largest sources of biomedical

literature is the MEDLINE database, created in 1965 and accessible through

PubMed. This database contains over 36 million references to journal articles10

in the life sciences, and more than 860,000 entries were added in 2022 1. Other

document repositories are also relevant to biomedicine, such as the European

Patent Office 2, ClinicalTrials.gov, and bioRxiv 3.

Automatic methods for Information Extraction (IE) aim at obtaining useful

information from large datasets, where manual methods would be unfeasible.15

Text mining aims at using IE methods to process text documents. The main

challenge of text mining is developing algorithms that can be applied to un-

structured text to obtain valuable and structured information. Biomedical lit-

erature is particularly challenging for text mining algorithms. The writing style

differs from other types of literature since it is more formal and specialized.20

Furthermore, different documents have different styles, depending on whether

the document is a journal paper, patent, or clinical report (Friedman et al.,

2002). Finally, different terms refer to genes, species, procedures, and tech-

niques. Within each specific term, it is also common to have multiple spellings,

abbreviations, and database identifiers. This complexity makes biomedical text25

mining a high-potential exploration field for developing IE tools (Cohen and

Hunter, 2004).

The interactions found in the biomedical literature can be used to validate

new research results or even to formulate new hypotheses to be tested experi-

mentally. One of the first demonstrations of the hidden knowledge contained in30

1https://pubmed.ncbi.nlm.nih.gov/
2https://www.epo.org/searching-for-patents.html
3https://www.biorxiv.org
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a large literature was Swanson’s ABC model (Swanson, 1990), which found that

dietary fish oils might benefit patients with Raynaud’s syndrome by connecting

the information present in two different sets of articles that did not cite each

other. Others have independently confirmed this inference in clinical trials (Di-

Giacomo et al., 1989). In the same study, Swanson provided two other examples35

of inferences that could not be drawn from a single article but only by combining

the information from multiple articles. Since that study, the number of articles

available has grown immensely. Intuitively, many new biomedical interactions

might be extracted from this source of information.

Bioinformatics databases have adopted text mining tools to identify new40

entries more efficiently. MirTarBase (Huang et al., 2021) is a database of ex-

perimentally validated miRNA-target interactions published in journal papers.

The curators of this database use a text mining system to identify new candi-

date entries for the database, which are then manually validated. This system

was necessary due to the important role miRNAs have been found to play in hu-45

man diseases over the last decade, leading to a high number of papers published

about this subject. The introduction of the system as part of the workflow has

led to a 42-fold increase in the number of interactions added to the database.

Text mining has generated much interest in the bioinformatics community

in recent years. Several tools and applications have been developed based on50

adaptations of text mining techniques to diverse problems and domains. This

paper provides a survey of biomedical text mining tools and applications that

demonstrate the usefulness of text mining techniques. The rest of the paper

consists of the following: Section 2 provides the basic concepts of text mining

relevant to this article, Section 3 describes some toolkits that can be used to55

develop text mining tools, Section 4 describes the most used text mining tools,

and Section 5 describes applications built using those tools that have been dis-

tributed to the general public. Section 6 provides a summary of the community

challenges organized to evaluate biomedical text mining tools. Finally, Section

7 suggests future directions for biomedical text mining tools and applications,60

and Section 8 summarizes the article’s main conclusions.

3



2. Background/Fundamentals

When developing and using text mining tools, it is necessary to define what

type of information should be extracted. This decision will then influence the

datasets to be considered, which text mining tasks to be explored, and which65

tools to be used. The objective of this section is to provide an overview of the

options available to someone interested in developing a new text mining tool or

using text mining for their work. The concepts introduced below are simple to

understand and applicable to various problems.

2.1. NLP Concepts70

Natural Language Processing (NLP) has been the focus of many researchers

since the 1950’s (Bates, 1995). The main difference between NLP and text min-

ing is the objective of the tasks. While NLP techniques aim at making sense of

the text, for example, determining its structure or sentiment, the objective of

text mining tasks is to obtain concrete structured knowledge from text. How-75

ever, there is an overlap between the two fields, and text mining tools usually

use NLP concepts and tasks.

The following list defines NLP concepts relevant to text mining.

Token: a sequence of characters with some meaning, such as a word, number

or symbol. The NLP task of identifying the tokens of a text is known80

as tokenization. It is of particular importance to text mining since most

algorithms will not consider elements smaller than tokens 4.

Part-of-speech (POS): the lexical category of each token, for example, noun,

adjective, or punctuation. The category imparts additional semantics to

the tokens. Part-of-speech tagging is an NLP task that consists in classi-85

fying each token automatically.

4Recent text mining systems, such as BERT (Devlin et al., 2019), presented sub-tokens for

vocabulary expansion
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Lemma and stem: the base form of a word. The lemma represents the

canonical form of the word, corresponding to a real word. The stem does

not always correspond to a real word but only to the fragment of a word

that never changes. For example, the lemma of the word ”induces” is90

”induce” while the stem is ”induc-”.

Sentence splitting: the NLP task consists of identifying the sentence bound-

aries of a text. The methods used to accomplish this task should consider

the difference between a period at the end of a sentence or at the end of an

acronym or abbreviation. Breaking a document into sentences is desirable95

because they represent unique ideas. Although the context of the whole

document is also important, extracting the knowledge of each sentence

independently can provide useful results.

Entity: a segment of text with relevance to a specific domain. An entity may

be composed of one or more tokens. Entity types relevant to biomedicine100

include genes, proteins, chemicals, cell lines, species, and biological pro-

cesses.

2.2. Text Mining Tasks

Text mining tools focus on one or more text mining tasks. It is necessary to

define these tasks properly so that it is possible to choose the type of tools that105

should be used for a given problem. Furthermore, these tasks and variants are

used to evaluate the performance of a tool on community challenges. The text

mining tasks presented here are common to all domains and sources of text,

although the performance of the methods on different domains may differ, i.e.,

a method that has a good performance on patent documents may not perform110

as well on clinical reports due to the different characteristics of the text. The

common final objective of these tasks, as to all text mining, is to extract useful

knowledge from a high volume of written text, while the extracted knowledge

can be useful for several applications, which will be described in section 5.
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Topic modelling: the classification of documents according to their topics or115

themes. This task aims to organize a set of documents to identify which

documents are more relevant to a given topic (Blei, 2012). Related tasks

include document triage (Buchanan and Loizides, 2007) and document

clustering.

Named Entity Recognition (NER): consists of identifying entities that are120

mentioned in the text. In most cases, the exact location of each entity in

the text is required, given by the offset (position) of its first and last char-

acters. In some cases, discontinuous entities may be considered, therefore

requiring multiple offset pairs. The classification of entity properties such

as its type (e.g., protein, cell line, chemical) can be included in this task125

(Nadeau and Sekine, 2007).

Normalization: consists of matching each entity to an identifier belonging

to a knowledge base that unequivocally represents its concept. For ex-

ample, a protein may be mentioned by its full name or an acronym; in

this case, the normalization process should assign the same identifier to130

both occurrences. The identifiers can be provided by an external database

or ontology (Tsuruoka et al., 2008). Related tasks include named entity

disambiguation (Bunescu and Pasca, 2006), named entity linking (NEL),

and harmonization.

Relation Extraction (RE): the identification of entities that participate in135

a relationship described in the text. Most tools consider relations be-

tween two entities in the same sentence, but some focus on n-ary relations

(between more than two entities) across multiple sentences. Biomedical

relations commonly extracted are gene-phenotype and drug-drug interac-

tions, see (Segura-Bedmar et al., 2014), for example.140

Event extraction: can be considered an extension of the relation extraction

task, where the label of the relation and role of each participant is speci-

fied. The events extracted should represent the mechanisms described in

6



the text (Ananiadou et al., 2010). Related tasks include slot-filling and

relation classification.145

Question Answering (QA): is a task where we aim to automatically answer

questions asked by humans in natural language using either an existing

structured database or a collection of natural language documents (Cali-

jorne Soares and Parreiras, 2020).

2.3. Text Mining Approaches150

Text mining tools employ various approaches to accomplish the tasks de-

scribed above. They may focus on one specific approach or combine several

techniques according to their respective advantages, the latter being more

common. Most approaches can also be adapted for performing more than

one task.155

Classic approaches: are approaches based on statistics that can be calculated

on a large corpus of documents (Manning et al., 1999). Some of the most

popular approaches are term frequency-inverse document frequency (tf-

idf) for topic modelling and co-occurrence for relation extraction. These

approaches preceded the popularization of machine learning algorithms,160

although most current approaches still have a statistical background.

Rule-based methods: consist of defining a set of rules to extract the desired

information. These rules can be a list of terms, regular expressions or

sentence structures. Due to the manual effort necessary to develop these

rules, text mining tools based on this approach have limited applicability.165

Machine learning (ML) algorithms: are used for automatically learning

various tasks. In text mining, it is necessary to convert the text to a

numeric representation, which is the expected input of these algorithms.

Text mining tools using ML assemble models trained on a corpus that

can subsequently be applied to other texts. In some cases, it may be170

possible to train additional models using other corpora. Several types of
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ML approaches can be considered, for example, supervised learning, in

which the labels of each instance of the training data are known and used

to train the classifier, and unsupervised learning, in which the algorithm

learns to classify the data without a labelled training set.175

Distant supervision (DS): is a learning process which heuristically assigns

labels to the data according to the information provided by a knowledge

base. These annotations are prone to error, but using ML algorithms

adapted to this method can provide effective classification models. Distant

supervision is sometimes referred to as weak supervision.180

Deep learning (DL): is an ML approach, based on artificial neural net-

works, that has become popular in the last years due to its performance

in fields such as speech recognition, computer vision, and text mining (Le-

Cun et al., 2015). In the case of text mining, deep learning is associated

with word embeddings, which consist of vector representations of word185

frequencies that are used as inputs to the networks.

2.4. Biomedical Corpora

Biomedical corpora are necessary to develop and evaluate text mining tools.

The simplest corpora consist of documents associated with a specific topic (e.g.,

disease, gene, or pathway). It is enough to know which documents are relevant190

for some tasks, such as simple topic modelling tasks. However, most ML algo-

rithms require annotated text to train their models. The type of annotations

necessary to evaluate a task should be similar to the type of annotations to be

extracted by the tools. NER tasks require text annotated with relevant entities

(e.g., BC5CDR (Li et al., 2016)), while relation extraction requires the relations195

between the entities described in the text to be annotated (e.g., PGR (Sousa

et al., 2019, 2020)). Domain experts should manually curate the annotations

according to established guidelines. Inter-annotator agreement measures, such

as the kappa statistic Carletta (1996), can be used to assess the reliability of the
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Table 1: Corpora relevant to biomedical text mining tasks
Name Annotations Document types Reference

CRAFT Biomedical entities Full-text articles Bada et al. (2012)

MedTag Biomedical entities PubMed abstracts Smith et al. (2005)

Genia Biomedical entities and events PubMed abstracts Kim et al. (2003)

CHEMDNER Chemical compounds PubMed abstracts Krallinger et al. (2015a)

CHEMDNER-patents Chemical compounds and proteins Patent abstracts Krallinger et al. (2015b)

BC5CDR Chemicals, diseases, and chemical-disease interactions PubMed abstracts Li et al. (2016)

BioRED Biomedical relations PubMed abstracts (Luo et al., 2022a)

PGR and PGR-crowd Human phenotype-gene relations PubMed abstracts Sousa et al. (2019, 2020)

DDI Drug-drug interactions Drug descriptions and journal abstracts Herrero-Zazo et al. (2013)

SeeDev Seed development events Full-text articles Chaix et al. (2016)

Thyme Events and time expressions Clinical notes Styler IV et al. (2014)

MLEE Biological events PubMed abstracts Pyysalo et al. (2012)

BioASQ Question-article pairs PubMed articles Tsatsaronis et al. (2015)

PubMedQA Question-answer pairs PubMed abstracts Jin et al. (2019)

BiQA Question-article pairs Medical forums Lamurias et al. (2020)

annotations. However, text mining tools may also help curators by providing200

automatic annotations as a baseline to be reviewed (Winnenburg et al., 2008).

The size of an annotated corpus is limited by the manual effort necessary to

annotate the documents. More straightforward tasks, such as topic modelling,

can be performed more quickly by human annotators, so developing an anno-

tated corpus for this task is less expensive. Relation extraction requires that205

the annotators first identify the entities mentioned in the text and then the

relationships described between the entities, which frequently requires multi-

domain knowledge. For this reason, developing an annotated corpus for this

task is more expensive. Biomedical text mining community challenges have

contributed to releasing several annotated gold standards to evaluate different210

systems. Section 6 provides a summary of these challenges. Table 1 provides a

list of annotated biomedical corpora relevant to various text mining tasks.

3. Text Mining Toolkits

Although biomedical text mining requires specialized approaches to deal

with the characteristics of the biomedical literature, general text mining tools215

can be used as a starting point for more specialized approaches. These general

tools can be adapted to specific domains by using models trained with biomed-

ical datasets or by developing pre- and post-processing rules developed for this
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type of text. Text mining toolkits are a type of software that can perform var-

ious NLP and text mining tasks. The objective of these toolkits is to provide220

general-purpose methods for performing various text mining tasks, which can

be adapted to specific problems. Several toolkits can be used to pre-process the

data, compare the performance of various tools and approaches, and select the

best combination for a specific problem. This section provides a survey of well-

known text mining toolkits used as frameworks for biomedical text mining tools.225

In addition to the toolkits presented here, tools can be developed from scratch

using programming languages and libraries that implement specific algorithms.

One of the most widely used text mining toolkits is Stanford CoreNLP (Man-

ning et al., 2014), which aggregates various tools developed by the Stanford NLP

team for processing text data. Biomedical text mining tools may use Stanford230

CoreNLP to pre-process the data (e.g., for sentence splitting, tokenization, and

co-reference resolution) and to generate features for machine learning classifiers

(e.g., for POS tagging, lemmatization, and dependency parsing).

NLTK (Bird et al., 2009), another NLP toolkit, was implemented as a Python

library. This toolkit provides interfaces to various NLP resources, such as Word-235

Net, tokenizers, stopwords lists, and datasets from community challenges. It is

often used by developers getting started in text mining due to its well-designed

API and the availability of various online tutorials for this toolkit. SpaCy5 is

another Python-based toolkit, which has become a popular choice due to its

focus computational performance and active development of new and improved240

features. This toolkit provides methods to easily prepare text data for state-

of-the-art deep learning algorithms, and can also run on Graphical Processing

Units (GPU).

ClearTK (Bethard et al., 2014) is a text mining toolkit based on machine

learning and the Apache Unstructured Information Management Architecture245

(UIMA). This framework provides interfaces to several machine learning li-

braries and feature extractors.

5https://spacy.io/
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GATE (Cunningham et al., 2013) is one of the few text mining toolkits with

features specially designed for biomedical text mining. This toolkit provides

plugins for bioinformatics resources such as Linked Life Data, other ontologies,250

and specialized biomedical NLP tools. Furthermore, it has a graphical user

interface to visualize and edit the data and system architecture.

4. Biomedical Text Mining Tools

This section describes text mining tools commonly used in bioinformatics.

These tools generally focus on one specific task, presenting novel approaches,255

and are evaluated on gold standards. We focus on tools described in the litera-

ture and freely available to the community. Even though the current trend is to

make software available on code repositories such as GitHub, GitLab, and Bit-

bucket, this has not always been the case, and past works may not be accessible

due to the privatization of the code. The tools described in this section have260

been used in community challenges. They may require considerable technical

skill to apply to specific problems since the results provided by their develop-

ers often refer to gold standards rather than to real-world use cases. Usually,

these tools are fine-tuned to work with English texts, but automatic translation

techniques can be effective when using texts in other languages Campos et al.265

(2017). Table 2 provides a list of biomedical text mining tools available to the

community.

4.1. NER and Normalization

Biomedical text mining tools can be organized in terms of the text mining

tasks performed. The biomedical community challenges organized in the last270

two decades have motivated several teams to develop tools for bioinformatics

and biomedical text mining. Initially, the main focus of these challenges has

been on recognizing genes, proteins and chemical compounds mentioned in texts

and linking those terms to databases. This focus leads to an imbalance in the

quantity and variety of tools available for NER and normalization compared to275

other tasks.
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Table 2: Text mining tools for bioinformatics and biomedical literature

Name Tasks Approaches GUI Reference

BANNER NER ML N Leaman et al. (2008)

ABNER NER ML N Settles (2005)

LingPipe NER and Topic Modelling ML and Rule-based N Carpenter (2007)

GNormPlus NER and Normalization ML N Wei et al. (2015)

DNorm NER and Normalization ML N Leaman et al. (2013)

tmChem NER ML N Leaman et al. (2015)

tmVar NER ML N Wei et al. (2013)

GENIA tagger NER and POS tagging ML N Tsuruoka and Tsujii (2005)

GENIA sentence splitter Sentence splitting ML N Sætre et al. (2007)

Acronime Abbreviation resolution Rule-based Y Okazaki and Ananiadou (2006)

@Note NER, document retrieval ML Y Lourenço et al. (2009)

MetaMap NER and Normalization Rule-based Y Aronson and Lang (2010)

LDPMap Normalization Rule-based N Ren et al. (2014)

SimSem Normalization ML and Rule-based N Stenetorp et al. (2011)

MER NER Rule-based N Couto et al. (2017)

IBEnt NER and Normalization ML and Rule-based N Lobo et al. (2017)

cTakes NER, normalization, and RE Rule-based Y Savova et al. (2010)

Neji NER and Normalization ML and Rule-based Y Campos et al. (2015)

jSRE RE ML N Giuliano et al. (2006)

DeepDive RE ML/DS N Zhang (2015)

IBRel RE ML/DS N Lamurias et al. (2017)

TEES Event extraction ML and Rule-based N Björne et al. (2011)

VERSE Event extraction ML N Lever and Jones (2016)

EventMine Event extraction ML Y Miwa et al. (2013)

Textpresso NER and RE Rule-based Y Müller et al. (2004)

BO-LSTM RE ML and Rule-based N Lamurias et al. (2019)

BiOnt and K-BiOnt RE ML and Rule-based N Sousa and Couto (2020, 2022)

K-RET RE ML N Sousa and Couto (2023)

MedQA QA Rule-based Y Lee et al. (2006)

askHERMES QA Rule-based Y Cao et al. (2011)

HealthQA QA ML N Zhu et al. (2019)

JPDRMM QA ML N Pappas et al. (2020)

SciBERT Representation learning ML N Beltagy et al. (2019)

BioBERT Representation learning ML N Lee et al. (2020)

PubMedBERT Representation learning ML N Gu et al. (2021)

BioGPT Representation learning ML N Luo et al. (2022b)
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BANNER (Leaman et al., 2008) uses Conditional Random Fields (Sutton

and McCallum, 2006) to perform NER of chemical compounds and genes. AB-

NER (Settles, 2005) and LingPipe (Carpenter, 2007) use similar approaches,

each combining different techniques to improve the results on gold standards280

by optimizing the system architecture and feature selection. LingPipe also per-

forms other NLP tasks, such as topic modelling and part-of-speech tagging,

while all three provide ways to train models on new data. Other systems have

combined machine learning algorithms and manual rules to achieve better re-

sults in the biomedical domain (Savova et al., 2010; Campos et al., 2015; Lobo285

et al., 2017).

GNormPlus (Wei et al., 2015) is a modular system for gene NER and normal-

ization, performing mention simplification and abbreviation resolution to match

each gene to an identifier with higher accuracy, even when more than one species

is involved. It is part of a set of NER tools developed by NCBI for various entity290

types, which includes tmChem (Leaman et al., 2015), DNorm (Leaman et al.,

2013) and tmVar (Wei et al., 2013). These tools are often evaluated in text

mining community challenges.

The GENIA project is responsible for various contributions to biomedical

text mining, including an annotated corpus (Kim et al., 2003) and various tools295

for text mining tasks. GENIA tagger (Tsuruoka and Tsujii, 2005) performs

NER of several types of entities relevant to biomedicine (protein, DNA, RNA,

cell line and cell types), as well as POS tagging. GENIA sentence splitter (Sætre

et al., 2007) is an ML-based tool for identifying sentence boundaries in biomed-

ical texts, trained on the GENIA corpus. Acromine (Okazaki and Ananiadou,300

2006) is another tool developed by the same team to provide definitions for

abbreviations found in MEDLINE abstracts.

Since the vocabulary used in clinical records differs from other biomedical

texts, tools have been developed specifically for this type of document. These

tools are based on the Unified Medical Language System (UMLS), a collection305

of vocabulary associated with the clinical domain. cTakes Savova et al. (2010) is

a Java-based tool for processing clinical text, originally developed at the Mayo
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Clinic, which performs several biomedical text mining tasks. It is possible to

use this tool through a graphical user interface. Due to UMLS’s large size and

complex structure, tools have been specifically developed just to find UMLS310

concepts in documents. Such tools include MetaMap (Aronson and Lang, 2010)

and LDPMap (Ren et al., 2014). SimSem (Stenetorp et al., 2011) is a tool for

entity normalization, using string matching techniques and machine learning.

This tool can match strings to various bioinformatics knowledge bases, such as

ChEBI, Gene Ontology, Entrez Gene, and UMLS. Couto et al. (2017) introduced315

a system, MER (Minimal Entity Recognizer), which can be easily adapted to

different entities. This system requires only a file with one entity per line and

uses a simple matching algorithm to find those entities in text.

Ruas and Couto (2022) created a model to associate NIL (out-of-knowledge-

base or unlinkable) entities, such as diseases, chemicals, anatomical parts, and320

biological processes, with the best available entry in biomedical knowledge bases

such as MEDIC, CTD-Chemical, CTD-Anatomy, Gene Ontology - Biological

Process, ChEBI ontology, and Human Phenotype Ontology.

4.2. Relation and Event Extraction

Most tools use ML algorithms for RE to classify which pairs of entities325

mentioned in the text constitute a relation. In this task, kernel methods and

Support Vector Machines were initially popular. jSRE (Giuliano et al., 2006)

uses a shallow linguistic kernel that considers the tokens, POS, and lemmas

around each entity of the pair. It has been used for various problems, including

drug-drug interaction extraction (Segura-Bedmar et al., 2011).330

Distant supervision has become particularly relevant to RE tasks because of

the cost of developing a corpus annotated with relations. Mallory et al. (2016)

developed an approach to gene RE using DeepDive, a general-purpose system

for training distantly supervised RE models. They applied this approach to

a corpus of full-text documents from three journals, using the BioGRID and335

Negatome databases as a reference. Another DS-based tool, IBRel (Lamurias

et al., 2017), uses TransmiR, a database of miRNA-gene associations, to extract
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the same type of relations from text.

BO-LSTM (Lamurias et al., 2019), BiOnt (Sousa and Couto, 2020), and K-

BiOnt (Sousa and Couto, 2022) are systems based on bidirectional long short-340

term memory networks (LSTM) allied with the addition of knowledge external

to the training data itself, such as domain-ontologies. The knowledge is linked

to the entities in the candidate relation, and entities can be of various types,

such as human phenotypes and genes. Moreover, K-RET (Sousa and Couto,

2023) performs entity knowledge injection directly into the text data, taking345

advantage of the latest advancements in pre-trained language representation

models.

Biomedical event extraction is complex, but some tools have been devel-

oped. TEES (Turku Event Extraction System) (Björne et al., 2011) identifies

complex events based on trigger words and graph methods. This system has350

been evaluated on multiple community challenges for event extraction and RE

tasks, such as the BioNLP-ST 2011 event extraction task. In the 2016 edition of

BioNLP-ST, Lever and Jones (2016) presented VERSE, a system for extracting

relations and events from text, and evaluated it on three subtasks. This sys-

tem is based on ML algorithms and has the advantage of being able to extract355

relations between entities in different sentences.

Textpresso (Müller et al., 2004) is a system for biomedical information ex-

traction based on regular expressions and ontologies. This system has been

applied to various domains. It is available through a web application to search

the results obtained on each domain.360

4.3. Question Answering

QA approaches are varied in that they can answer a question in multiple

forms that require different tool architectures. An answer can be a simple

YES/NO/MAYBE, a sentence retrieved from a document or a sentence resulting

from multiple-text processing, or a relevant document or set of documents.365

Biomedical QA was initially tackled by using rule-based models and other

complex modular pipelines on small-scale datasets (Jin et al., 2022). MedQA
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(Lee et al., 2006) and askHERMES (Cao et al., 2011) are examples of traditional

QA approaches. MedQA integrates information retrieval, extraction, and sum-

marizing techniques that answer user questions by generating paragraph-size370

answers. askHERMES implements innovative approaches in question analy-

sis, summarization, and answer presentation in a sentence format by naturally

entering a question.

Recent approaches are mostly ML-based, such as HealthQA (Zhu et al.,

2019) and JPDRMM (Pappas et al., 2020). HealthQA focuses on recommending375

relevant documents for the question proposed using a deep attention mechanism

at word, sentence, and document levels for the retrieval of both factoid and non-

factoid queries. JPDRMM is a neural re-ranking model that receives the top

N documents retrieved by a conventional information retrieval engine and is

trained to jointly re-rank the top N documents and their snippets to produce380

an answer.

4.4. Representation Learning

One of the latest pushes towards improving biomedical NER, normalization

and several other NLP tasks, such as RE and QA, were contextualized word

embeddings generated by pre-trained language models, also known as Large385

Language Models (LLMs). SciBERT (Beltagy et al., 2019), BioBERT (Lee

et al., 2020), PubMedBERT (Gu et al., 2021), and BioGPT (Luo et al., 2022b)

are examples that specifically target the biomedical domain, but several other

models/LLMs trained or fine-tuned on biomedical corpora exist (Kim et al.,

2019).390

There are also general NLP tools that do not target the biomedical domain

specifically but have gained traction given the possibility of using them without

the need for domain adaption, which are mostly LLMs such as PaLM 2 (Anil

et al., 2023) and GPT (Brown et al., 2020). We call this usage zero- or few-shot

learning, where we make predictions on data different from the data used for395

training. While some works have demonstrated their ability to perform simple

biomedical tasks, most still struggle to grasp the full complexity of the domain
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Table 3: Bioinformatics applications that either use text mining tools or their results, acces-

sible from the web

Name API Reference

Whatizit Y Rebholz-Schuhmann et al. (2008)

BeCAS Y Nunes et al. (2013)

miRetrieve N Friedrich et al. (2021)

MER Y Couto et al. (2017)

PubTator Y Wei et al. (2019)

SciLite Y Venkatesan et al. (2016)

BEST N Lee et al. (2016)

STRING Y Szklarczyk et al. (2019)

STITCH Y Szklarczyk et al. (2016)

FACTA+ N Tsuruoka et al. (2011)

PolySearch2 Y Liu et al. (2015)

EVEX Y Hakala et al. (2013)

MEDIE N Miyao et al. (2006)

and perform better when fine-tuned (Jahan et al., 2023). It is also necessary to

guarantee a rigorous validation and verification protocol of these tools, given the

inherent risk of misinformation, lack of transparency, and biased interpretations400

prevalent in generative artificial intelligence.

5. Applications

Even though it is important to develop methods for specific tasks, those

methods will only benefit the community if they can be easily used to help

address biomedical problems. Since recent text mining tools have obtained405

good performance on evaluation corpora, efforts have been made to deliver these

tools to the general public. In this section, we present a survey of text mining

applications available in the form of web pages and APIs focusing on the user

experience. Table 5 provides a summary of these applications.
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Some biomedical text mining applications provide access to a text mining410

tool via a web application. The user uploads one or more documents to be

processed by the tool on a server. Then, the tool delivers or displays the results

to the user. Even though this is a significant effort, a web application assumes

user pre-selection of documents to be processed and depends on downstream

applications to use the results. Whatizit (Rebholz-Schuhmann et al., 2008) is a415

text mining application that can be used to identify biomedical entities in text

using a web browser or API. This application is a rule-based text mining system

which annotates the documents submitted by users. The entities correspond

to entries in biomedical knowledge bases, such as ChEBI and UniProt. The

results are presented as a web page, where each entity type is marked differently.420

A similar application is BeCAS (Nunes et al., 2013), based on the Neji tool.

This application can also access the results through a web browser or the API,

which can then be exported to various file formats. miRetrieve (Friedrich et al.,

2021) is an R package and web application for miRNA text mining. Designed

for PubMed abstracts, this tool is able to extract miRNA names and their425

associated terms.

Other text mining applications provide pre-processed results, reducing the

time necessary to obtain results. For example, PubTator (Wei et al., 2019) con-

tains every PubMed abstract, annotated with the NCBI NER tools, and it is

updated as new abstracts are added to PubMed. Users can search for a list of430

abstracts or by keyword. Also, it is possible to create a collection of abstracts,

manually fix annotation errors, and download the results. PubTator provides

access to the results through an API for integration with other applications.

For example, the Mark2Cure crowdsourcing project uses this API to provide

users with a baseline of automatic annotations. At the same time, the HuGE435

navigator knowledge base (Yu et al., 2008) relies on PubTator to improve its

weekly update process. Another application based on pre-processed results is

SciLite, a platform for displaying text mining annotations integrated with the

Europe PMC database (Venkatesan et al., 2016). This application shows a list

of biomedical terms associated with each document, allowing users to endorse440
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and report incorrect annotations to improve the text mining method. Biomed-

ical Entity Search Tool (BEST) (Lee et al., 2016) uses text mining techniques

to retrieve entities relevant to user queries. BEST is updated daily with the

abstracts added to PubMed and can identify up to ten types of entities in each

document.445

The STRING database stores information about protein-protein interaction

networks (Szklarczyk et al., 2017). It contains information obtained through

various methods, including text mining. The interactions extracted using text

mining methods are obtained from PubMed and a collection of full-text docu-

ments. The RE method used is based on the co-occurrence of proteins in the450

same document and the presence of trigger words such as ”binding” and ”phos-

phorylation by”. A related database, STITCH (Szklarczyk et al., 2016), uses a

similar method to identify chemical-protein interactions based on the biomedical

literature.

FACTA+ (Tsuruoka et al., 2011) is a text mining application for identifying455

biomedical events described in PubMed abstracts. It uses both co-occurrence

and machine learning approaches to extract relations from text. The user can

perform a keyword search to obtain associated documents and biomedical en-

tities, such as genes, diseases, and drugs. Furthermore, FACTA+ can identify

indirect relations between a concept and a type of biomedical entity. For ex-460

ample, it is possible to search for a disease name and obtain genes indirectly

associated with that disease through an intermediary disease, ranked by a nov-

elty and reliability score.

PolySearch2 (Liu et al., 2015) can also identify relations between biomedical

concepts based on co-occurrence at the sentence level. With this application, it465

is possible to obtain all the entities of a specific type associated with the input

query. The corpora and databases used by this application are stored locally

and updated daily to ensure that the complete information is available to the

users.

EVEX (Hakala et al., 2013) is a database of biomolecular events extracted470

from abstracts and full-text articles using text mining tools such as BANNER
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and TEES. This database contains more than 40 million associations between

genes and proteins, and its data can be downloaded and accessed through an

API, although it is not updated regularly. MEDIE (Miyao et al., 2006) contains

biomolecular events extracted from MEDLINE. Each event comprises a subject,475

a verb, and an object. Using MEDIE, it is possible to search by subject, verb or

object (or a combination of the three) and obtain all matching events extracted

from the abstracts.

Recently, there has not been much focus on transitioning from building a tool

to making it available via a web page or API. This lack of focus on direct usage480

is rooted primarily in the increasing facilitation of direct application of tools via

code repositories and Docker images. However, with the rise and popularity of

generative Artificial Intelligence (AI) based web applications, such as BARD6

and ChatGPT7, the integration of biomedical tools into applications has appeal

to more companies (Song, 2023), with Viz.ai8 and PathAI9 being just some of485

the examples. These applications come with the caveat of being black boxes;

in a sense that most lack the support of a research paper, the source code and

model weights are not shared, and they can only be used through an API, whose

results may differ with time for the same input and cannot be run locally.

6. Community Challenges490

The scientific community organises text mining challenges regularly to evalu-

ate the performance of text mining tools. These text mining challenges are open

to the community, meaning that any academic or industry team can participate.

Usually, each challenge comprises several tasks (sometimes called tracks), each

with a specific motivation, objective and gold standard. Each team may submit495

results to one or more tasks. Furthermore, the teams may develop their own

tools or adapt existing tools to the proposed task.

6https://bard.google.com/
7https://chat.openai.com/
8https://www.viz.ai/
9https://www.pathai.com/
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The task organizers announce their objectives on the challenge’s official web-

sites and through mailing lists. Since there are various data file formats used

in text mining, a sample of the data may be provided to the participants si-500

multaneously with the announcement. This is also the case of datasets that

require data use agreements. Afterwards, the training set is provided to the

participants, consisting of documents and annotations. This training set is used

to develop or adapt tools and systems to the task. A development set may

also be provided, similar in size to the training set, to improve the systems505

further. During the final phase of the challenge, a testing set is sent to the

teams without the gold standard annotations. The teams have a deadline to

submit the annotations obtained with their tools, which are then compared to

the gold standard by the organizers. Each task has a defined set of measures to

perform this evaluation and rank the teams. The results are then published on510

the challenge website and in a task overview paper.

One of the earliest NLP challenges, TREC, mainly focuses on the news do-

main, but it has included a bioinformatics task in some of its editions (TREC

Genomics and TREC Chemistry). In 2003, this challenge had a task for re-

trieving documents related to gene functions (Hersh and Bhupatiraju, 2003),515

while in later years, more complex tasks have also been proposed (Hersh and

Voorhees, 2009). Other NLP challenges, such as KDD Cup (Yeh et al., 2002)

and CoNLL (Farkas et al., 2010), also include bioinformatics tasks. SemEval is

a series of semantic analysis evaluations organized yearly, and in some editions,

there has been one task relevant to bioinformatics (Segura Bedmar et al., 2013;520

Elhadad et al., 2015; Bethard et al., 2016).

Due to increasing interest in biomedical NLP and text mining, community

challenges for this domain have been organized. BioCreative was first orga-

nized in 2004, and it consisted of identifying gene mentions and Gene Ontol-

ogy terms in articles and gene name normalization (Hirschman et al., 2005).525

Since then, six more editions of this challenge have been organized, with vari-

ous tasks. BioNLP has organized various biomedical IE tasks, usually focused

on a specific biological system such as seed development (Chaix et al., 2016),
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epigenetics and post-translational modifications (Ohta et al., 2011), cancer ge-

netics (Pyysalo et al., 2015), and general clinical NLP (Demner-Fushman et al.,530

2022). Other community challenges relevant to biomedical text mining include

JNLPBA (Kim et al., 2004), BioASQ (Nentidis et al., 2022), i2b2 (Sun et al.,

2013), and ShARe/CLEF eHealth (Kelly et al., 2014; Nakov et al., 2022). Huang

and Lu (2016) provides an overview of the community challenges organized over

12 years.535

7. Future Directions

While recent advances in biomedical text mining are exciting and open

new opportunities for data exploration and comprehension, the emergence of

deep learning methods catapulted the necessity for explainability (Frisoni et al.,

2021). The lack of explainability of DL models makes it hard to trust predic-540

tions, specifically when these target the highly complex biomedical domain. The

injection of knowledge into DL systems can contribute to more explainable pre-

dictions (Moradi and Samwald, 2021; Aisopos and Paliouras, 2023). However,

we can still not fully follow the path from input to prediction when dealing with

DL. The path forward passes by not only explaining predictions but also defining545

what degree of explainability is adequate and necessary for each end-user.

Further, ethical AI is a field that aims that AI systems go towards greater

ecological integrity and social justice (van Wynsberghe, 2021; Vinuesa et al.,

2020). A study by Strubell et al. (2019) illustrated that training a single DL,

NLP model can lead to approximately 600,000 lb of carbon dioxide emissions.550

Reproducibility is also an ongoing issue in the field (Digan et al., 2021), given

that there are systems whose code is not shared. Frequently, authors justify this

choice through privacy claims. However, there should always be a way to at

least partially replicate the system. All community members’ continued sharing

and discussion of open-sourced systems contribute to significant advances in the555

field. These and other concerns, such as biased datasets (Bender and Friedman,

2018; Ray, 2023), should be addressed and prioritised by the groups working on
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biomedical text mining.

8. Closing Remarks

There has been considerable effort by the text mining community to develop560

and release efficient tools and applications for helping biomedical researchers

find what they need from the vast amount of knowledge being published. This

article presents various text mining tools and applications using different ap-

proaches and addressing different tasks, and successfully real-world use cases.

The evolution of biomedical text mining methods has led to more efficient pro-565

cessing of biomedical literature. These advances should affect how databases

are created and maintained and how search engines index documents.

Besides its complexity, biomedical knowledge is constantly evolving and is

highly dependent on the context, i.e. it is hard to find a generic answer to

a biomedical question that perfectly fits the need of all users. Thus, like in570

precision medicine, future bioinformatics search engines may take into account

the context of the user and provide him with multiple scientifically and ethically

medical perspectives that help him decide the best solution for his problem.
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